Goals

• Define pelvic ring instability
• Decision process: operate or not?
• Non-operative treatment
• Principles of operative treatment
• Preoperative planning
• Surgical approaches
• Techniques of pelvic reduction and fixation
• Biomechanics of fixation techniques
• Outcomes of pelvic ring injury
Introduction:
Pelvic Ring Stability

• Stability defined as ability to support physiologic load
• Physiologic load may be sitting, side lying, or standing, as dictated by patient needs
Introduction: Pelvic Ring Stability

- Posterior ring integrity is important in transferring load from torso to lower extremities.
Defining Instability

- Loss of posterior ring integrity often leads to instability
- Loss of anterior ring integrity may contribute to instability, and may be a marker to posterior ring injury
- Tile classification scheme based on instability patterns
Is it stable?

• Is there deformity?
 – Deformity on presentation predicts instability
Is it stable?

- Is there deformity?
- Is the posterior pelvic ring intact?
 - CT scan
Is it stable?

- Is there deformity?
- Is the posterior pelvic ring intact
- Stress radiographs
Is it stable?

- Is there deformity?
- Is the posterior pelvic ring intact
- Stress radiographs
- Are there clues to soft tissue injury?
 - LS transverse process fx
 - Ischial spine avulsion
 - Lateral sacral avulsion
Describing Instability

• Refer to previous lecture on Classification
• Tile Classification
 – A stable
 – B partially stable
 – C unstable
Operative Indications

• Resuscitation
 – See previous lecture on Acute Management
• Assist in mobilization
 – Just as stabilizing long bones helps in mobilization of polytrauma patients
• Prevent long term functional impairment
 – Deformity of pelvic ring can impact function
Non-Operative Management

• Lateral impaction type injuries with minimal (< 1.5 cm) displacement
• Pubic rami fractures with no posterior displacement
• Minimal gapping of pubic symphysis
 – Without associated SI injury
 – 2.5 cm or less, assuming no motion with stress or mobilization
 – This number is not absolute, so other evidence of instability (like SI injury) must be ruled out
Non-Operative Management

• X-rays are static picture of dynamic situation
 – It may be that the deformity is worse than seen on X-rays taken
 – Stress radiographs may be helpful
 – Post-mobilization radiographs should be taken in all cases of non-operative treatment
 – Other evidence of instability should be sought
 • Lumbar transverse process fractures
 • Avulsions of sacrotuberosus/sacrospinous ligaments
Non-Operative Treatment

• Tile A (stable) injuries can generally bear weight as tolerated
• Walker/crutches/cane often helpful in early mobilization
• Serial radiographs followed during healing
• Displacement requires reassessment of stability and consideration given to operative treatment
Non-Operative Treatment

- Tile B (partially stable) injuries can be treated non-operatively if deformity is minimal
- Weight bearing should be restricted (toe-touch only) on side of posterior ring injury
- Serial radiographs followed during healing
- Displacement requires reassessment of stability and consideration given to operative treatment
Non-Operative Treatment

- Failure of non-operative treatment may be due to displacement after mobilization
- Excessive pain which precludes early mobilization may also be failure of non-operative treatment
Principles of Operative Treatment

- Posterior ring structure is important
- Goal is restoration of anatomy and enough stability to maintain reduction during healing
- Most injuries involve multiple sites of injury
 - In general, more points of fixation lead to greater stability
 - This does NOT mean that all sites of injury need fixation
Principles of Operative Treatment

• Anterior ring fixation may provide structural protection of posterior fixation
• If combined open and percutaneous techniques are used, the open portion is often done first to aid in reduction of the percutaneously treated injury
Surgical Treatment: Preoperative Planning

• Consider patient related factors
 – Surgical clearance, resuscitation
 – Coordination of care
 • Trauma surgeon, intensivist, neurosurgeon
Surgical Treatment: Preoperative Planning

• Consider patient related factors
 – Associated injuries
 • May need general surgeon, genitourinary surgeon, gynecologist, plastic surgeon
Preoperative Planning

• Timing of surgery
 – Reduction may be easiest in first 24-48 hours
 • May aid in percutaneous reduction
 – Patients often not adequately resuscitated in first 24 hours
 – Potential for surgical “secondary hit” on post-injury days 2-5
 • May be a significant issue in open procedures
Preoperative Planning

• Intraoperative imaging
 – Radiolucent table
 – Fluoroscopy
 – Radiologic Technician and Surgeon understand C-arm views necessary
Preoperative Planning

• Reduction tools
 – Traction
 – Pelvic manipulator (e.g. femoral distractor)
 – Specialized clamps
Preoperative Planning

• Implants needed
 – Extra-long screws
 – Cannulated screws, often extra-long with appropriate instruments
 – Specialized plates for contourability (reconstruction plates)
 – External fixation
Preoperative Planning

• Surgical approaches planned
 – Soft tissues examined
 – Patient positioning planned
 • Is it safe to prone patient?
 • Equipment/padding for safe prone positioning
Surgical Approaches: Anterior Pelvic Ring

• Pfannenstiel
 – Exposure of symphysis pubis and pubic bones
 – Avoid transection of rectus tendons
 – Elevate rectus subperiosteally
Surgical Approaches: Anterior Pelvic Ring

- Stoppa extension
 - Exposes symphysis to SI joint along pelvic brim
Surgical Approaches: Posterior Pelvic Ring

- Anterior approach
 - Iliac window of the ilioinguinal
 - Exposure of SI joint
Surgical Approaches: Posterior Pelvic Ring

• Posterior approach
 – Exposure of sacrum and posterior ilium
 – Sacral fractures
 – Iliac fracture dislocations of the SI joint (crescent fracture)
Surgical Approaches: Posterior Pelvic Ring

- Posterior approach
Reduction and Fixation: Symphysis

• Reduction with clamp
 – Weber clamp on pectineal eminences

Matta and Tornetta, CORR 329, pp129-140, 1996
Reduction and Fixation: Symphysis

- Reduction with clamp
 - Jungbluth clamp with screws

Matta and Tornetta, CORR 329, pp129-140, 1996
Reduction and Fixation: Symphysis

- Pelvic reconstruction plate
 - Commonly 6 hole plate
 - Variable directions of screws
Reduction and Fixation: Ramus Fractures

• Pelvic reconstruction plate

• Medullary screw fixation
 – Retrograde
 – Antegrade
Reduction and Fixation: Ramus Fractures

- Pelvic reconstruction plate
- Medullary screw fixation
 - Retrograde
 - Antegrade
Reduction and Fixation: Ramus Fractures

- Pelvic reconstruction plate
- Medullary screw fixation
 - Retrograde
 - Antegrade
Reduction and Fixation: Ramus Fractures

- Anterior External Fixation
 - Controls rotation only
 - Pins in gluteus medius pillar of ilium
 - Alternative placement in Anterior Inferior Iliac Spine
Reduction and Fixation: SI Joint Dislocation

- Anterior exposure facilitates reduction of dislocation
- Iliac window of ilioinguinal approach
Reduction and Fixation: SI Joint Dislocation

- Clamp applied from lateral, posterior ilium to anterior sacral ala
Reduction and Fixation: SI Joint Dislocation

- Plating
 - Need more than one plate to avoid linkage displacement
 - Can be used in tandem or with SI screw
Reduction and Fixation: SI Joint Dislocation

- SI screw
 - Cannulated for ease of placement
 - Partially threaded for reduction
 - Fully threaded for improved fixation
 - Knowledge of anatomy and imaging is essential
 - Be aware of sacral dysmorphism
Reduction and Fixation: SI Joint Fracture/Dislocation

“Crescent Fracture”

- SI screw
 - If caudal segment is in the path of fixation screw
 - Opportunity for percutaneous treatment
Reduction and Fixation: SI Joint Fracture/Dislocation

“Crescent Fracture”

- SI screw and plate
 - Anterior ORIF if large fragment
 - Supplement as needed with SI screw
Reduction and Fixation:
SI Joint Fracture/Dislocation
“Crescent Fracture”

- ORIF with plate
 - Posterior approach
Reduction and Fixation:
SI Joint Fracture/Dislocation
“Crescent Fracture”

- ORIF with plate
 - Posterior approach
Reduction: Sacral Fracture

- Indirect reduction
 - Anterior ring reduction
Reduction: Sacral Fracture

- Indirect reduction
 - Anterior ring reduction

Open reduction pubic root
Reduction: Sacral Fracture

- Indirect reduction
 - Anterior ring reduction
Reduction:
Sacral Fracture

- Indirect reduction
 - Distractor
 - Traction
Reduction: Sacral Fracture

- Indirect reduction
 - Distractor
 - Traction
Reduction:
Sacral Fracture

• Direct reduction
 – Posterior exposure
 – Clamp application
 • Pointed Weber clamps
 – Can decompress as well if needed
Reduction: Sacral Fracture

Matta and Tornetta, CORR 329, pp129-140, 1996
Fixation: Sacral Fracture

- Iliosacral screws
 - Upper 2 sacral segments
 - Fully threaded screws
 - Know morphology, anatomy
Fixation: Sacral Fracture

- **Iliosacral screws**
 - Upper 2 sacral segments
 - Fully threaded screws
 - Know morphology, anatomy
Fixation: Sacral Fractures

- Lumbopelvic fixation
 - Vertical control
 - Can be useful in unstable H or Y type sacral fracture

- Transiliac plating
Biomechanics of Pelvic Fixation:

• No clinical comparison studies exist
• Experimental biomechanical data exist
• In general, it seems that more points/planes of fixation provide better stability
• How much stability is enough is injury dependant
Biomechanics of Pelvic Fixation: Anterior Fixation

- Anterior plating superior to external fixation in internal/external rotation
- Neither technique very effective at control of vertical displacement
- Anterior fixation can “protect” posterior fixation from failure
Biomechanics of Pelvic Fixation: Anterior Fixation

- Two hole symphyseal plate inadequate
- Retrograde pubic screw higher failure rate than antegrade
Biomechanics of Pelvic Fixation: Posterior Fixation

- Options include single SI screw, multiple SI screws, double plating of SI joint, transiliac plate of sacral fracture, or plate plus SI screw for sacral fracture or SI dislocation
- Any of the above are more stable than single SI screw in unstable injuries
Biomechanics of Pelvic Fixation: Posterior Fixation

• Lumbopelvic fixation
 – Lumbopelvic dissociation (unstable Y, H, or U type sacral fractures)
 – Sacral fractures with significant instability
 – Can provide axial (vertical) stability that is not as dependant on fracture reduction/stability
Outcomes

• Pain common
• Improvement occurs for at least a year in most patients
• Neurologic injury most common predictor of poor outcome
Outcomes

- SI dislocations have poor tolerance for residual displacement
- Sacral fractures have more tolerance for displacement, but parameters poorly understood
- Injury Severity Score and fracture type do not correlate with functional outcome
Conclusions: Pelvic Ring Injury

- Complex constellation of injuries
- Treatment based on comprehensive understanding of potential pelvic ring instability, displacement, and associated injuries
- Surgical techniques for reduction and stabilization continue to evolve
If you would like to volunteer as an author for the Resident Slide Project or recommend updates to any of the following slides, please send an e-mail to ota@ota.org